Breakdown of phosphatidylinositol provoked by muscarinic cholinergic stimulation of rat parotid-gland fragments.
نویسندگان
چکیده
When rat parotid fragments that had been labelled with (32)P in vivo were exposed to high concentrations of acetylcholine, radioactivity was lost from phosphatidylinositol but not from other phospholipids. Simultaneously the concentration of phosphatidylinositol in the tissue decreased. If previously unlabelled tissue was incubated with (32)P(i) an increase in incorporation of radioactivity into phosphatidylinositol was observed during this decrease in concentration. The effects of acetylcholine were blocked by atropine, but not by tubocurarine. The response to acetylcholine was rapid, with up to one-third of the tissue's phosphatidylinositol disappearing within 5min. Similar effects were evoked by stimulation with methacholine and by high concentrations of tetramethylammonium ion; these responses were also atropine-sensitive and tubocurarine-insensitive. It is concluded that the event in inositol lipid metabolism that is affected by acetylcholine stimulation is removal of the phosphorylinositol group from the molecule; this is mediated through muscarinic cholinergic receptors. This is followed by a compensatory increase in the rate of synthesis of phosphatidylinositol, which has been described in detail in the past. These observations are compared with those of previous workers and are discussed in relation to the existing hypotheses relating to the significance of stimulus-provoked phosphatidylinositol turnover.
منابع مشابه
Lithium-induced reduction in intracellular inositol supply in cholinergically stimulated parotid gland.
The effects of lithium and cholinergic stimulation on inositol phospholipid metabolism have been assessed using rat parotid gland slices and isolated acinar cells labelled with 32Pi. Cholinergic stimulation using carbachol caused substantial breakdown of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) and enhanced labelling of phosphatidate (PA) and phosphatidylinositol (PtdIns). Lithium alone...
متن کاملReceptor-mediated net breakdown of phosphatidylinositol 4,5-bisphosphate in parotid acinar cells.
The metabolism of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] in rat parotid acinar cells was investigated, particularly with regard to the effects of receptor-active agonists. Stimulation of cholinergic-muscarinic receptors with methacholine provoked a rapid disappearance of 40--50% of [32P]PtdIns(4,5)P2, but had no effect on PtdIns4P. ...
متن کاملMuscarinic cholinergic stimulation of phosphatidylinositol turnover in the longitudinal smooth muscle of guinea-pig ileum.
1. The metabolism of phosphatidylinositol and phosphatidate was investigated in fragments of longitudinal smooth muscle from guinea-pig ileum incubated with cholinergic and anticholinergic drugs. 2. Incorporation of Pi into these lipids was enhanced by acetylcholine and carbamoylcholine. 3. The receptor responsible for triggering this response was of the muscarinic type, since (a) the response ...
متن کاملBreakdown of polyphosphoinositides and not phosphatidylinositol accounts for muscarinic agonist-stimulated inositol phospholipid metabolism in rat parotid glands.
The molecular mechanisms underlying the ability of muscarinic agonists to enhance the metabolism of inositol phospholipids were studied using rat parotid gland slices prelabelled with tracer quantities of [3H]inositol and then washed with 10 mM unlabelled inositol. Carbachol treatment caused rapid and marked increases in the levels of radioactive inositol 1-phosphate, inositol 1,4-bisphosphate,...
متن کاملThe relationship of phosphatidylinositol turnover to receptors and calcium-ion channels in rat parotid acinar cells.
To help elucidate the possible role of phosphatidylinositol in the regulation of membrane permeability to Ca2+, the relationship in the rat parotid gland of phosphatidylinositol turnover to hormone receptor binding and to the hormone-mediated increase in K+ permeability (a Ca2+-dependent phenomenon) was investigated. The concentrations of adrenaline and substance P required to stimulate phospha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 142 3 شماره
صفحات -
تاریخ انتشار 1974